Source code for skan.draw

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import collections
from matplotlib.patches import Circle
import networkx as nx
from skimage import img_as_float, morphology
from skimage.color import gray2rgb


def _normalise_image(image, *, image_cmap=None):
    image = img_as_float(image)
    if image.ndim == 2:
        if image_cmap is None:
            image = gray2rgb(image)
        else:
            image = plt.get_cmap(image_cmap)(image)[..., :3]
    return image


[docs] def pixel_perfect_figsize(image, dpi=80): """Return the Matplotlib figure size tuple (w, h) for given image and dpi. Parameters ---------- image : array, shape (M, N[, 3]) The image to be plotted. dpi : int, optional The desired figure dpi. Returns ------- figsize : tuple of float The desired figure size. Examples -------- >>> image = np.empty((768, 1024)) >>> pixel_perfect_figsize(image) (12.8, 9.6) """ hpix, wpix = image.shape[:2] return wpix / dpi, hpix / dpi
[docs] def overlay_skeleton_2d( image, skeleton, *, image_cmap=None, color=(1, 0, 0), alpha=1, dilate=0, axes=None ): """Overlay the skeleton pixels on the input image. Parameters ---------- image : array, shape (M, N[, 3]) The input image. Can be grayscale or RGB. skeleton : array, shape (M, N) The input 1-pixel-wide skeleton. Other Parameters ---------------- image_cmap : matplotlib colormap name or object, optional If the input image is grayscale, colormap it with this colormap. The default is grayscale. color : tuple of float in [0, 1], optional The RGB color for the skeleton pixels. alpha : float, optional Blend the skeleton pixels with the given alpha. dilate : int, optional Dilate the skeleton by this amount. This is useful when rendering large images where aliasing may cause some pixels of the skeleton not to be drawn. axes : matplotlib Axes The Axes on which to plot the image. If None, new ones are created. Returns ------- axes : matplotlib Axes The Axis on which the image is drawn. """ image = _normalise_image(image, image_cmap=image_cmap) skeleton = skeleton.astype(bool) if dilate > 0: selem = morphology.disk(dilate) skeleton = morphology.binary_dilation(skeleton, selem) if axes is None: fig, axes = plt.subplots() image[skeleton] = alpha * np.array(color) + (1-alpha) * image[skeleton] axes.imshow(image) axes.axis('off') return axes
[docs] def overlay_euclidean_skeleton_2d( image, stats, *, image_cmap=None, skeleton_color_source='branch_type', skeleton_colormap='viridis', axes=None ): """Plot the image, and overlay the straight-line skeleton over it. Parameters ---------- image : array, shape (M, N) The input image. stats : array, shape (M, N) Skeleton statistics. Other Parameters ---------------- image_cmap : matplotlib colormap name or object, optional The colormap to use for the input image. Defaults to grayscale. skeleton_color_source : string, optional The name of the column to use for the skeleton edge color. See the output of `skan.summarise` for valid choices. Most common choices would be: - skeleton-id: each individual skeleton (connected component) will have a different colour. - branch_type: each branch type (tip-tip, tip-junction, junction-junction, path-path). This is the default. - branch-distance: the curved length of the skeleton branch. - euclidean-distance: the straight-line length of the skeleton branch. skeleton_colormap : matplotlib colormap name or object, optional The colormap for the skeleton values. axes : matplotlib Axes object, optional An Axes object on which to draw. If `None`, a new one is created. Returns ------- axes : matplotlib Axes object The Axes on which the plot is drawn. """ image = _normalise_image(image, image_cmap=image_cmap) summary = stats # transforming from row, col to x, y coords_cols = (['image_coord_src_%i' % i for i in [1, 0]] + ['image_coord_dst_%i' % i for i in [1, 0]]) coords = summary[coords_cols].values.reshape((-1, 2, 2)) if axes is None: fig, axes = plt.subplots() axes.imshow(image) axes.axis('off') color_values = summary[skeleton_color_source] cmap = plt.get_cmap( skeleton_colormap, min(len(np.unique(color_values)), 256) ) colormapped = cmap((color_values - np.min(color_values)) / (np.max(color_values) - np.min(color_values))) linecoll = collections.LineCollection(coords, colors=colormapped) axes.add_collection(linecoll) return axes
[docs] def overlay_skeleton_2d_class( skeleton, *, image_cmap='gray', skeleton_color_source='path_means', skeleton_colormap='viridis', vmin=None, vmax=None, axes=None ): """Plot the image, and overlay the skeleton over it. Parameters ---------- skeleton : skan.Skeleton object The input skeleton, which contains both the skeleton and the source image. Other Parameters ---------------- image_cmap : matplotlib colormap name or object, optional The colormap to use for the input image. Defaults to grayscale. skeleton_color_source : string or callable, optional The name of the method to use for the skeleton edge color. See the documentation of `skan.Skeleton` for valid choices. Most common choices would be: - path_means: the mean value of the skeleton along each path. - path_lengths: the length of each path. - path_stdev: the standard deviation of pixel values along the path. Alternatively, a callable can be provided that takes as input a Skeleton object and outputs a list of floating point values of the same length as the number of paths. skeleton_colormap : matplotlib colormap name or object, optional The colormap for the skeleton values. vmin, vmax : float, optional The minimum and maximum values for the colormap. Use this to pin the colormapped values to a certain range. axes : matplotlib Axes object, optional An Axes object on which to draw. If `None`, a new one is created. Returns ------- axes : matplotlib Axes object The Axes on which the plot is drawn. mappable : matplotlib ScalarMappable object The mappable values corresponding to the line colors. This can be used to create a colorbar for the plot. """ if axes is None: fig, axes = plt.subplots() if skeleton.source_image is not None: axes.imshow(skeleton.source_image, cmap=image_cmap) if callable(skeleton_color_source): values = skeleton_color_source(skeleton) elif hasattr(skeleton, skeleton_color_source): values = getattr(skeleton, skeleton_color_source)() else: raise ValueError( 'Unknown skeleton color source: %s. Provide an ' 'attribute of skan.csr.Skeleton or a callable.' % skeleton_color_source ) cmap = plt.get_cmap(skeleton_colormap, min(len(np.unique(values)), 256)) if vmin is None: vmin = np.min(values) if vmax is None: vmax = np.max(values) mapping_values = (values-vmin) / (vmax-vmin) mappable = plt.cm.ScalarMappable(plt.Normalize(vmin, vmax), cmap) mappable._A = mapping_values colors = cmap(mapping_values) coordinates = [ skeleton.path_coordinates(i)[:, ::-1] for i in range(skeleton.n_paths) ] linecoll = collections.LineCollection(coordinates, colors=colors) axes.add_collection(linecoll) return axes, mappable
[docs] def sholl_shells(center, radii, *, axes=None, **kwargs): """Draw concentric circles around a center point. Parameters ---------- center : array of float, shape (2,) The center of the circles. This should be in NumPy-style row/column coordinates. radii : array of float, shape (N,) The radii of the concentric circles. axes : matplotlib Axes, optional The axes on which to draw the circles. If None, create a new instance. Returns ------- axes : matplotlib Axes The axes on which the circles were drawn patches : list of matplotlib Patches The patch objects that were drawn. Notes ----- Additional keyword arguments are passed directly to the `matplotlib.patches.Circle` call. Valid keywords include ``edgecolor``, ``linestyle``, and `linewidth``. See matplotlib documentation for details. """ row, col = center color = kwargs.pop('edgecolor', 'cornflowerblue') circles = [ Circle((col, row), radius=r, fill=False, edgecolor=color, **kwargs) for r in radii ] if axes is None: _, axes = plt.subplots() for c in circles: axes.add_patch(c) return axes, circles
[docs] def pipeline_plot( image, thresholded, skeleton, stats, *, figure=None, axes=None, figsize=(9, 9) ): """Draw the image, the thresholded version, and its skeleton. Parameters ---------- image : array, shape (M, N, ...[, 3]) Input image, conformant with scikit-image data type specification [1]_. thresholded : array, same shape as image Binarized version of the input image. skeleton : array, same shape as image Skeletonized version of the input image. stats : pandas DataFrame Skeleton statistics from the input image/skeleton. Other Parameters ---------------- figure : matplotlib Figure, optional If given, where to make the plots. axes : array of matplotlib Axes, optional If given, use these axes to draw the plots. Should have len 4. figsize : 2-tuple of float, optional The width and height of the figure. smooth_method : {'Gaussian', 'TV', 'NL'}, optional Which denoising method to use on the image. Returns ------- fig : matplotlib Figure The Figure containing all the plots axes : array of matplotlib Axes The four axes containing the drawn images. References ---------- .. [1] http://scikit-image.org/docs/dev/user_guide/data_types.html """ if figure is None: fig, axes = plt.subplots( 2, 2, figsize=figsize, sharex=True, sharey=True ) axes = np.ravel(axes) else: fig = figure if axes is None: ax0 = fig.add_subplot(2, 2, 1) axes = [ax0] + [ fig.add_subplot(2, 2, i, sharex=ax0, sharey=ax0) for i in range(2, 5) ] axes = np.ravel(axes) axes[0].imshow(image, cmap='gray') axes[0].axis('off') axes[1].imshow(thresholded, cmap='gray') axes[1].axis('off') overlay_skeleton_2d(image, skeleton, axes=axes[2]) overlay_euclidean_skeleton_2d(image, stats, axes=axes[3]) fig.subplots_adjust(0, 0, 1, 1, 0, 0) return fig, axes
def _clean_positions_dict(d, g): for k in list(d.keys()): if k not in g: del d[k] elif g.degree(k) == 0: g.remove_node(k)
[docs] def overlay_skeleton_networkx( csr_graph, coordinates, *, axis=None, image=None, cmap=None, **kwargs ): """Draw the skeleton as a NetworkX graph, optionally overlaid on an image. Due to the size of NetworkX drawing elements, this is only recommended for very small skeletons. Parameters ---------- csr_graph : SciPy Sparse matrix The skeleton graph in SciPy CSR format. coordinates : array, shape (N_points, 2) The coordinates of each point in the skeleton. ``coordinates.shape[0]`` should be equal to ``csr_graph.shape[0]``. Other Parameters ---------------- axis : Matplotlib Axes object, optional The Axes on which to plot the data. If None, a new figure and axes will be created. image : array, shape (M, N[, 3]) An image on which to overlay the skeleton. ``image.shape`` should be greater than ``np.max(coordinates, axis=0)``. **kwargs : keyword arguments Arguments passed on to `nx.draw_networkx`. Particularly useful ones include ``node_size=`` and ``font_size=``. """ if axis is None: _, axis = plt.subplots() if image is not None: cmap = cmap or 'gray' axis.imshow(image, cmap=cmap) gnx = nx.from_scipy_sparse_array(csr_graph) # Note: we invert the positions because Matplotlib uses x/y for # scatterplot, but the coordinates are row/column NumPy indexing positions = dict(zip(range(coordinates.shape[0]), coordinates[:, ::-1])) _clean_positions_dict(positions, gnx) # remove nodes not in Graph nx.draw_networkx(gnx, pos=positions, ax=axis, **kwargs) return axis